Motor-Circuit Communication Matrix from Spinal Cord to Brainstem Neurons Revealed by Developmental Origin

نویسندگان

  • Chiara Pivetta
  • Maria Soledad Esposito
  • Markus Sigrist
  • Silvia Arber
چکیده

Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective effect of curcumin and Curcuma longa extract on apoptosis of motor neurons in cultured spinal cord slices of adult mouse

Introduction: Since Curcuma longa extract and curcumin have been shown to be potent antioxidant agents, they were used in cultured adult mouse spinal cord slices to investigate whether they can inhibit apoptosis in motor neurons. Methods: Slices from the thoracic region of adult mice spinal cord were divided into four groups: 1. Freshlyprepared slices (time 0) 2. Control 3. Slices treated by cu...

متن کامل

Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy.

The childhood motor neuron disease spinal muscular atrophy (SMA) results from reduced expression of the survival motor neuron (SMN) gene. Previous studies using in vitro model systems and lower organisms have suggested that low levels of Smn protein disrupt prenatal developmental processes in lower motor neurons, influencing neuronal outgrowth, axon branching and neuromuscular connectivity. The...

متن کامل

Brief Communication L1.1 Is Involved in Spinal Cord Regeneration in Adult Zebrafish

Adult zebrafish, in contrast to mammals, regrow axons descending from the brainstem after spinal cord transection. L1.1, a homolog of the mammalian recognition molecule L1, is upregulated by brainstem neurons during axon regrowth. However, its functional relevance for regeneration is unclear. Here, we show with a novel morpholino-based approach that reducing L1.1 protein expression leads to imp...

متن کامل

Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control

Important questions remain about the origin of the excitation that drives locomotion in vertebrates and the roles played by reticulospinal neurons. In young Xenopus tadpoles, paired whole-cell recordings reveal reticulospinal neurons that directly excite swimming circuit neurons in the brainstem and spinal cord. They form part of a column of neurons (dINs) with ipsilateral descending projection...

متن کامل

Role of GluR1 in activity-dependent motor system development.

Activity-dependent specification of neuronal architecture during early postnatal life is essential for refining the precision of communication between neurons. In the spinal cord under normal circumstances, the AMPA receptor subunit GluR1 is expressed at high levels by motor neurons and surrounding interneurons during this critical developmental period, although the role it plays in circuit for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 156  شماره 

صفحات  -

تاریخ انتشار 2014